翻訳と辞書
Words near each other
・ Harsha V. Agadi
・ Harsha Vardhan
・ Harsha Vithana
・ Harsha Walia
・ Harshaali Malhotra
・ Harshabardhan
・ Harshabashpam
・ Harshacharita
・ Harshad Arora
・ Harshad Bhadeshia
・ Harshad Chopra
・ Harshad Hanumant Gadekar
・ Harshad Khadiwale
・ Harshad Meher
・ Harshad Mehta
Harshad number
・ Harshad Patel
・ Harshadev Madhav
・ Harshaguda
・ Harshal Patel
・ Harshal Pushkarna
・ Harshana Rajakaruna
・ Harshavardhan Neotia
・ Harshavardhan Patil
・ Harshavarman I
・ Harshavarman II
・ Harshavarman III
・ Harshaville Covered Bridge
・ Harshaville, Ohio
・ Harshaville, Pennsylvania


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Harshad number : ウィキペディア英語版
Harshad number
In recreational mathematics, a Harshad number (or Niven number) in a given number base, is an integer that is divisible by the sum of its digits when written in that base.
Harshad numbers in base ''n'' are also known as ''n''-Harshad (or ''n''-Niven) numbers.
Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "Harshad" comes from the Sanskrit ' (joy) + ' (give), meaning joy-giver. The term “Niven number” arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977. All integers between zero and ''n'' are ''n''-Harshad numbers.
== Definition ==

Stated mathematically, let ''X'' be a positive integer with ''m'' digits when written in base ''n'', and let the digits be ''ai'' (''i'' = 0, 1, ..., ''m'' − 1). (It follows that ''ai'' must be either zero or a positive integer up to ''n'' − 1.) ''X'' can be expressed as
:X=\sum_^ a_i n^i.
If there exists an integer ''A'' such that the following holds, then ''X'' is a Harshad number in base ''n'':
:X=A\sum_^ a_i.
A number which is a Harshad number in every number base is called an all-Harshad number, or an all-Niven number. There are only four all-Harshad numbers: 1, 2, 4, and 6 (The number 12 is a Harshad number in all bases except octal).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Harshad number」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.